27 agosto, 2013

EXPLICACIÓN A LENTES GRAVITACIONALES EN LA TEORÍA DE GRAVITACIÓN EXTENDIDA

* La teoría modela el grado de deflexión que sufre la luz al pasar cerca de sistemas masivos.
* Proporciona también una descripción de la expansión acelerada del Universo.
* Astrofísicos del IA-UNAM continúan sus avances en materia de gravitación y cosmología.



Los Drs. Sergio Mendoza Ramos y Xavier Hernández Doring y sus colaboradores del Instituto de Astronomía (IA) de la Universidad Nacional Autónoma de México (UNAM), han encontrado una manera coherente de explicar el grado de deflexión de la luz al pasar cerca de una galaxia y de cúmulos de galaxias (efecto conocido como lente gravitacional), utilizando su teoría de gravitación extendida, en lugar de suponer la existencia de materia oscura.


La fenomenología que se observa a nivel astrofísico y cosmológico se explica típicamente suponiendo que existe materia oscura “exótica” en el contexto del modelo estándar de partículas, y una energía oscura de efectos repulsivos, derivada de la teoría de Einstein, pero aún sin detecciones experimentales directas. Los investigadores del IA-UNAM han desarrollado una aproximación dirigida a modificar o extender la teoría de gravitación, que ofrece una explicación alternativa.

Este trabajo, realizado por los investigadores del IA-UNAM en conjunto con el Dr. J.C. Hidalgo y los doctorandos M. en C. T. Bernal y M. en C. L.A. Torres, muestra que su teoría métrica de gravitación extendida es capaz de explicar la dinámica de estrellas y planetas a escalas del sistema solar, de galaxias y de cúmulos de galaxias, así como la deflexión de la luz producida por estos últimos, conocida como efecto de lente gravitacional. Este fenómeno es producido cuando la luz proveniente de objetos muy luminosos y distantes pasa cerca de sistemas muy masivos, como grandes grupos de galaxias, y sufre una desviación aparente en su trayectoria. Los efectos observados son interpretados como producto de la curvatura del espacio-tiempo debido a la distribución de masa observada, y más generalmente constituyen una prueba para la validación de una teoría de gravitación.



Una teoría completa de gravitación debe ser capaz de explicar una gran cantidad de observaciones, incluyendo aquellas a escalas cosmológicas. En una primera aproximación, el Dr. Sergio Mendoza junto con sus estudiantes, el Fís. Diego Carranza y el M. en C. Luis Torres, han mostrado recientemente que la actual expansión del universo puede ser entendida con la misma extensión a la teoría de gravitación propuesta, sin necesidad de materia o energía oscura. El grupo del IA-UNAM continúa así sus investigaciones en pruebas a nivel extragaláctico y cosmológico.

Para que una nueva teoría de gravedad sea exitosa debe explicar satisfactoriamente el movimiento de partículas masivas (como planetas y estrellas), así como el movimiento de aquellas sin masa (como la trayectoria de los rayos luminosos). Uno de los ejemplos más famosos en este contexto fue la predicción de la teoría de Einstein, validada hace casi 100 años, del grado de desviación de la luz al pasar por el limbo solar durante el eclipse total de 1919, así como la explicación de las modificaciones observadas en la órbita del planeta Mercurio.

El fundamento de esta teoría de gravitación radica en el que a una cierta escala el comportamiento de la gravedad cambia, y en que el punto de transición está ligado a la concentración de materia en el sistema. Los sistemas astrofísicos con una alta densidad, como el sistema solar, son bien explicados por la teoría de relatividad general de Einstein; sin embargo, los sistemas mucho más enrarecidos en masa, como las periferias de las galaxias, y el universo mismo como un todo, requieren de un nuevo entendimiento. El comportamiento de sistemas a estas grandes escalas no está en acuerdo con las predicciones derivadas de la relatividad general, a menos que se introduzcan los conceptos de materia y energía oscura, o bien, que se consideren modificaciones a la gravitación, como se propone en estos trabajos.


Referencias:

“Gravitational lensing with f(χ)=χ^{3/2}  gravity in accordance with astrophysical observations”
S. Mendoza, T. Bernal, X. Hernández, J.C. Hidalgo, L.A. Torres
Monthly Notices of the Royal Astronomical Society (19 de junio 2013), Oxford University Press.
Preimpresión disponible en http://dx.doi.org/10.1093/mnras/stt752

Lecturas adicionales:

“A Phase Space Diagram for Gravity”
X. Hernandez
Entropy, mayo 2012
www.mdpi.com/1099-4300/14/5/848

"A natural approach to extended Newtonian gravity: tests and predictions across astrophysical scales",
S. Mendoza, X. Hernandez, J.C. Hidalgo & T. Bernal (2011),
Monthly Notices of the Royal Astronomical Society, 411 p.226-234. Preimpresión disponible en arxiv.org/abs/1006.5037

"Recovering MOND from extended metric theories of gravity",
T. Bernal, S. Capozziello, J.C. Hidalgo & S. Mendoza (2012),
European Physical Journal C 71:1794. Preimpresión disponible en arxiv.org/abs/1108.5588

"Extending Cosmology: The Metric Approach",
S. Mendoza (2012),
Open Questions in Cosmology, InTech, disponible en: intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach

"A cosmological dust model with extended f(x) gravity"
D.A. Carranza, S. Mendoza, y L.A. Torres (2013) 
European  Physical Journal 73:2282
Preimpresión disponible en arxiv.org/pdf/1208.2502


Boletín del IA-UNAM

No hay comentarios.: